FR. Conceicao Rodrigues College Of Engineering Father Agnel Ashram, Bandstand, Bandra-west, Mumbai-50 Computer Engineering Department

T.E. (Computer) (semester V) (2019-2021) Course Outcomes & Assessment Plan

Course CSC405: Theoretical Computer Science Syllabus

Credits: 04

<u>Course Objectives:</u>

- 1. Acquire conceptual understanding of fundamentals of grammars and languages.
- 2. Build concepts of theoretical design of deterministic and non-deterministic finite automata and push down automata.
- 3. Develop understanding of different types of Turing machines and applications.
- 4. Understand the concept of Undecidability.

Prerequisite: Discrete Mathematics

Module	Unit	Topics	Theory	Tutorial	
No.	No.		Hrs.	Hrs.	
1.0		Basic Concepts and Finite Automata	09	03	
	1.1	 Alphabets, Strings, Languages, Closure properties. 			
		• Finite Automata (FA) and Finite State machine (FSM).			
	1.2	Deterministic Finite Automata (DFA) and Nondeterministic			
		Finite Automata (NFA): Definitions, transition diagrams and			
		Language recognizers			
		NFA to DFA Conversion			
		 Equivalence between NFA with and without ε- transitions 			
		Minimization of DFA			
		FSM with output: Moore and Mealy machines, Equivalence			
		 Applications and limitations of FA 			
2.0		Regular Expressions and Languages	06	02	
	2.1	Regular Expression (RE)			
		 Equivalence of RE and FA, Arden's Theorem 			
		RE Applications			
	2.2	Regular Language (RL)			
		 Closure properties of RLs 			
		 Decision properties of RLs 			
		Pumping lemma for RLs			
3.0		Grammars	08	03	
	3.1	Grammars and Chomsky hierarchy			
	3.2	Regular Grammar (RG)			

		Equivalence of Left and Right linear grammar		
		 Equivalence of RG and FA 		
	3.3	Context Free Grammars (CFG)		
		 Definition, Sentential forms, Leftmost and Rightmost 		
		derivations, Parse tree, Ambiguity.		
		 Simplification and Applications. 		
		Normal Forms: Chomsky Normal Forms (CNF) and		
		Greibach Normal Forms (GNF).		
		CFLs - Pumping lemma, Closure properties		
4.0		Pushdown Automata(PDA)	04	01
	4.1	Definition, Transitions ,Language of PDA		
		Language acceptance by final state and empty stack		
		 PDA as generator, decider and acceptor of CFG. 		
		Deterministic PDA, Non-Deterministic PDA		
		Application of PDA.		
5.0		Turing Machine (TM)	09	03
	5.1	Definition, Transitions		
		Design of TM as generator, decider and acceptor.		
		 Variants of TM: Multitrack, Multitape 		
		Universal TM.		
		 Equivalence of Single and Multi Tape TMs. 		
		 Applications, Power and Limitations of TMs. 		
		Context Sensitivity and Linear Bound Automata.		
6.0		Undecidability	03	01
	6.1	Decidability and Undecidability,		
		Recursive and Recursively Enumerable Languages.		
		Halting Problem,		
		• Rice's Theorem,		
		Post Correspondence Problem,		
		Total	39	13

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed.

Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

TCS- Lecture Plan (2019-2020) Modes of Content Delivery:

i	Class Room	v	Self-Learning Online	ix	Industry Visit
	Teaching		Resources		
ii	Tutorial	vi	Slides	X	Group Discuss.
iii	Remedial Coaching	vii	Simulations/Demonstrations	xi	Seminar
Iv	Lab Experiment	viii	Expert Lecture	xii	Case Study

No.	Portion to be covered	Planned	Actual	Content
		date	date	Delivery
1.	Importance of TCS, Course Outcomes	01/07/2019		Blackboard
2	Alphabets, Strings, Languages, Closure Properties.	04/07/2019		Blackboard
3	Finite Automata and Finite State Machine (Divide by 3 – FSM)	05/07/2019		Blackboard
4	DFA Definition, Transition Diagrams and Language recognizers examples	08/07/2019		Blackboard
5	DFA – Design problems	09/07/2019		Blackboard
6	NFA Definition and Design problems	10/07/2019		Blackboard
7	NFA to DFA conversion.	11/07/2019		
8	NFA with e-transitions and NFA equivalence	12/07/2019		Blackboard
9	NFA with e-transitions to DFA conversions	15/07/2019		
10	Minimization of DFA	15/07/2019		Blackboard
11	Minimization of DFA	17/07/2019		Blackboard
12 13	FSM with output: Moore Machine	19/07/2019 22/07/2019		Blackboard
14	FSM with output: Mealy Machine	22/07/2019		Blackboard
15	Applications and Limitations of DFA	24/07/2019		Blackboard
16	Regular Expressions, RE and FA equivalence	26/07/2019		Blackboard
17	Arden's Theorem	29/07/2019		Blackboard
18	Regular Language (RL), Closure and desicion properties of RL	29/07/2019		Blackboard
19	Pumping Lemma of RL	31/07/2019		Blackboard
20	Turing Machine: Definition, Transitions	02/08/2019		Blackboard

21	Turing Machine as generator, decider	05/08/2019	Blackboard
22		05/08/2019	
23	Turing Machine as generator, acceptor	07/08/2019	Blackboard
24	Varients of Turing Machine, Universal TM	09/08/2019	Blackboard
25	Equivalence of single and Multitape TMs, Applications, Powers and Limitations	12/08/2019	Blackboard
26	Grammars and Chomsky hierarchy	19/08/2019	Blackboard
27	Regular Grammar(RG), Left linear and Right linear Grammar	21/08/2019	Blackboard
28	Equivalence of RG and FA	23/08/2019	Blackboard
29	Context Free Grammar: Design	26/08/2019	Blackboard
30		26/08/2019	
31	Parse tree and Ambiguity	28/08/2019	Blackboard
32		30/08/2019	
33	Simplification and Applications	09/09/2019	Blackboard
34	Chomsky Normal Form	09/09/2019	Blackboard
35	Greibach Normal Form	11/09/2019	Blackboard
36	CFLs- Pumping Lemma	13/09/2019	Blackboard
37	CFLs-Closure properties	16/09/2019	Blackboard
38	Push Down Automata :Definition, transitions, Applications	16/09/2019	Blackboard
39	PDA-as generator, decider	18/09/2019	Blackboard
40	PDA-as acceptor	20/09/2019	Blackboard
41	Deterministic PDA	23/09/2019	Blackboard
42		23/09/2019	
43	Non-deterministic PDA	25/09/2019	Blackboard
44	Decidability and Undecidability	27/09/2019	Blackboard
45	Halting Problem, Recursive and	30/09/2019	Blackboard
46	Recursively Enumerable Languages	30/09/2019	
47	Rice's Theorm	04/10/2019	Blackboard
48	Post Correspondence Problem	07/10/2019	Blackboard

Total = 48

Assignments:						
Sr.No.	Assignment Topic	Date				
01	Finite State Machine Design Problems	15/07/2019				
02	NFA and DFA and Equivalence	22/07/2019				
03	Regular Expressions Writing	29/07/2019				
04	Turing Machine Design problems	05/08/2019				
05	Context Free Grammar Design and Ambiguity	26/08/2019				
06	Push Down Automata Design Problems	23/10/2019				

Text Books:

- 1. John E, Hopcroft, Rajeev Motwani, Jeffery D. Ullman, "Introduction of Automata Theory, Languages and Computation, Pearson Edition
- 2. Michael Siper, "Theory of Computation", Cengage Learning
- 3. Vivek Kulkarni, :Theory of Computation", Oxford University Press. India

Reference Books:

- 1. J. C. Martin, "Introduction to languages and Theory of Computation", Tata McGraw Hill.
- 2. Kavi Mahesh, "Theory of Computation: A Problem Solving Approach", Wiley-India.

Course Outcomes:

At the end of the course student will be able to

- CSC504.1: Identify the central concepts in theory of computation and differentiate between deterministic and non deterministic automata, also obtain equivalence between NFA and DFA [Application/Analysis]
- CSC504.2: Infer the equivalence of languages described by finite automata and regular expressions.[Comprehension]
- CSC504.3: Devise regular, context free grammars while recognizing the strings and tokens [Synthesis]
- CSC504.4: Design pushdown automata to recognize the language.[Synthesis]
- CSC504.5: Develop an understanding of computation through Turing Machine. [Synthesis]
- CSC504.6: Acquire fundamental understanding of decidability and undecidability. [Knowledge]

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CSC504.1	3	3	3										3	3
CSC504.2	3	3	3	3									3	3
CSC504.3	3	3	3	3									3	3
CSC504.4	3	3	3										3	3
CSC504.5	3	3	3										3	3
CSC504.6	3	3								2		3	3	3
Mapping	3	3	3	3						2		3	3	3

Mapping of CO with PO:

Course Outcomes Target:

Upon completion of this course students will be able to:

- CSC504.1: Identify the central concepts in theory of computation and differentiate between deterministic and non deterministic automata, also obtain equivalence between NFA and DFA. **Target level: 2.5**
- CSC504.2: Infer the equivalence of languages described by finite automata and regular expressions.[Comprehension] **Target level: 2.5**
- CSC504.3: Devise regular, context free grammars while recognizing the strings and tokens [Synthesis] Target level: 2.5
- CSC504.4: Design pushdown automata to recognize the language. Target level: 2.5
- CSC504.5: Develop an understanding of computation through Turing Machine. [Synthesis] Target level: 2.5
- CSC504.6: Acquire fundamental understanding of decidability and undecidability. [Knowledge] Target level: 2.5

Content Beyond Syllabus:

Sr.No.	Content Beyond Syllabus	Action Plan	CO/PO Mapping
1	Recursive & Recursively Enumerable	Planned one Guest	CO6/PO12
	Languages	lecture.	
2	Undecidability & Halting Problem	(18-Sept 2019)	
3	Research Paper study		P012

<u>CO Assessment Tools:</u>

<u>CSC504.1:</u>	Test 1 : 20% (Total Marks = 10),	Assignment 1: 20% (Total Marks = 10)
	Assignment 2: 20% (Total Marks	s = 10) End Sem Theory: 40%
<u>COdm</u>	<u> = 0.2*Test1+0.2*Assign1+0.2*Asiig</u>	<u> 22+0.4*End Sem Marks-Th</u>
CSC5	04.1= 0.8 * COdm + 0.2 COidm	

<u>CSC504.2:</u> Test 1: 30% (*Total Marks = 05*), Assignment 3: 30% (Total Marks = 10) End Sem Theory: 40% <u>COdm = 0.3*Test1+0.3*Assign3+0.4*End Sem Marks-Th</u>

CSC504.2= 0.8 * COdm + 0.2 COidm

<u>CSC504.3:</u> Test 2: 30% (Total Marks = 12), Assignment 5: 30% (Total Marks = 10) End Sem Theory: 40%

COdm = 0.3*Test2+0.3*Assign5+0.4*End Sem Marks-Th

CSC504.3= 0.8 * COdm + 0.2 COidm

<u>CSC504.4:</u> Test 2: 30% (*Total Marks = 05*), Assignment 6: 30% (Total Marks = 20) End Sem Theory: 40% <u>COdm = 0.3*Test2+0.3*Assign6+0.4*End Sem Marks-Th</u>

CSC504.4= 0.8 * COdm + 0.2 COidm

<u>CSC504.5:</u> Test 1: 30% (*Total Marks = 05*), Assignment 4: 30% (Total Marks = 20) End Sem Theory: 40%

<u>COdm = 0.3*Test2+0.3*Assign4+0.4*End Sem Marks-Th</u> CSC504.5= 0.8 * COdm + 0.2 COidm

<u>CSC504.6:</u> Test 2: 20% (Total Marks = 03), Quiz: 30% (Total Marks = 20) End Sem Theory: 50% <u>COdm = 0.2*Test2+0.3*Quiz+0.5*End Sem Marks-Th</u> CSC504.6= 0.8 * COdm + 0.2 COidm
