Lesson Plan

Branch: COMP
Semester IV
Year: 2022-23

Course Title: CSC401	SEE: 3 Hours - Theory
Total Contact Hours: 36 Hours	Duration of SEE: 3 Hrs
SEE Marks: 80 (Theory) +20 (IA)	
Lesson Plan Author: Gajendra Singh	Date: $09 / 01 / 2023$
Checked By:	Date: $22 / 04 / 2023$

Prerequisites:

Pre-requisite:

Engineering Mathematics - I, Engineering Mathematics - II, Engineering Mathematics - III, Binomial Distribution
Syllabus:

Syllabus:

1. Linear Algebra (Theory of Matrices)

- Characteristic Equation, Eigenvalues and Eigenvectors and properties (without proof)
- Cayley-Hamilton Theorem (without proof), verification and reduction of higher degree polynomials
- Similarity of matrices, diagonalizable and non-diagonalizable matrices

2. Complex Integration

- Line Integral, Cauchy's Integral theorem for simple connected and multiply connected regions (without proof), Cauchy's Integral formula (without proof).
- Taylor's and Laurent's series (without proof)
- Definition of Singularity, Zeroes, poles of $f(z)$, Residues, Cauchy's Residue Theorem (without proof)

3. Linear Programming Problems

- Types of solutions, Standard and Canonical of LPP, Basic and Feasible solutions, slack variables, surplus variables, Simplex method.
- Artificial variables, Big-M method (Method of penalty)
- Duality, Dual of LPP and Dual Simplex Method

4. Nonlinear Programming Problems

- NLPP with one equality constraint (two or three variables) using the method of Lagrange's multipliers
- NLPP with two equality constraints
- NLPP with inequality constraint: Kuhn-Tucker conditions

5. Probability Distribution and Sampling Theory

- Probability Distribution: Poisson and Normal distribution
- Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and two-tailed test, Degree of freedom
- Students' t-distribution (Small sample). Test the significance of mean and Difference between the means of two samples. Chi-Square Test: Test of goodness of fit and independence of attributes, Contingency table

6. Z Transform

- Definition and Region of Convergence, Transform of Standard Functions: .
- Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by k, Convolution theorem
- Inverse Z transform: Partial Fraction Method, Convolution Method.

Course Outcomes (CO):

On successful completion of course learner will be able to:

CSC401.1	Apply the concepts of eigen values and eigen vectors in engineering problems.
CSC401.2	Use the concepts of Complex Integration for evaluate various contour integrals.
CSC401.3	Apply the concept of Z- transformation and its inverse in engineering problems.
CSC401.4	Use the concept of probability distribution and sampling theory to engineering problems.
CSC401.5	Apply the concept of Linear Programming Problems of optimization
CSC401.6	Solve Non-Linear Programming Problems to engineering problems of optimization.

CO	BL	C	PO	Mapping
CSC401.1	2	1.6	PO1	2
		1.7		
		2.1	PO2	1
		2.5		
		2.7		
		2.8		
CSC401.2	4	1.2	PO1	1
		1.7		
		2.5	PO2	1
		2.6		
		2.8		
		3.6	PO1	1
		3.7		
		4.4	PO1	1
		4.5		
		4.6		
CSC401.3	3	1.2	PO1	1
		1.7		

		$\begin{aligned} & 2.5 \\ & 2.6 \\ & 2.8 \end{aligned}$	PO1	1
		$\begin{aligned} & 3.6 \\ & 3.7 \end{aligned}$	PO1	1
		$\begin{aligned} & 4.4 \\ & 4.5 \end{aligned}$	PO1	1
CSC401.4	3	$\begin{aligned} & 1.2 \\ & 1.7 \end{aligned}$	PO1	2
		$\begin{aligned} & 2.5 \\ & 2.6 \\ & 2.8 \end{aligned}$	PO1	2
		$\begin{array}{\|l\|} \hline 3.6 \\ 3.7 \end{array}$	PO1	2
		4.4	PO1	2
CSC401.5	3	$\begin{array}{\|l} \hline 1.2 \\ 1.7 \end{array}$	PO1	2
		$\begin{aligned} & 2.5 \\ & 2.6 \\ & 2.8 \end{aligned}$	PO2	1
		$\begin{array}{\|l\|} \hline 3.6 \\ 3.7 \\ \hline \end{array}$	PO1	2
		4.4	PO1	2
CSC401.6	3	$\begin{aligned} & 1.2 \\ & 1.7 \end{aligned}$	PO1	2
		$\begin{aligned} & 2.5 \\ & 2.6 \\ & 2.8 \end{aligned}$	PO2	1
		$\begin{array}{l\|} \hline 3.6 \\ 3.7 \end{array}$	PO1	2
		4.4	PO1	2

Justification:

Above CO's are mapped to the following PO's as explained below:
PO1: provide the complete basic mathematical knowledge required for

- diagonalization of a matrix.
- evaluating complex integral
- evaluate Z and inverse Z transform.
- probability theory and testing of hypothesis.
- solving linear programming problem (LPP).
- solving non-linear programming problem (NLPP).

Course	PO1	PO 2
$\operatorname{CSC} 401.1$	2	1
$\operatorname{CSC} 401.2$	1	1
$\operatorname{CSC} 401.3$	1	1
$\operatorname{CSC} 401.4$	2	1

CSC401.5	2	1
CSC401.6	2	1
TOTAL	10	6
Direct Attainment	$1.67(\mathrm{M})$	1

CO-PSO Mapping:

CO	BL	C	PI	PO	Mapping
CSC401.1	2	1.6	1.5 .1	PSO1	2
		1.7	1.7 .1		
		2.1	2.5 .2	PSO2	3
		2.5	2.5 .3		

	PSO	PSO
1	2	
$\operatorname{CSC} 401.1$	3	
$\operatorname{CSC} 401.2$	3	
$\operatorname{CSC} 401.3$	3	
$\operatorname{CSC} 401.4$	3	2
$\operatorname{CSC} 401.5$	3	3
$\operatorname{CSC} 401.6$	3	

CO Measurement Weightages for Tools:

	Test	Lab	Assignment	SEE (O)	SEE (T)	Course Exit Survey
CSC401.1	20%		20%		60%	100%
CSC401.2	20%		20%		60%	100%
CSC401.3	20%		20%		60%	100%
CSC401.4	20%		20%		60%	100%
CSC401.5	20%		20%		60%	100%
CSC401.6	20%		20%		60%	100%

Attainment:

CO CSC401.1:
Direct Method
$A_{\text {ECC401.1D }}=0.2 *$ Test $+0.2 *$ Assignment $+0.6 *$ SEE_Theory $_{\text {Final Attainment: }}$
$A_{\mathrm{ECC} 401.1}=0.8 * A_{\mathrm{ECC} 401.1 \mathrm{D}}+0.2 * A_{\mathrm{ECC} 401.1 \mathrm{I}}$
CO CSC401.2:
Direct Method
$A_{\text {ECC401D }}=0.2 *$ Test $+0.2 *$ Assignment $+0.6 *$ SEE_Theory $_{\text {Final Attainment }}$
$A_{\mathrm{ECC} 401.2}=0.8 * A_{\mathrm{ECC} 401.2 D}+0.2 * A_{\mathrm{ECC} 401.2 I}$
CO CSC401.3:
Direct Method
$A_{\text {ECC401.3 }}=0.2 *$ Test $+0.2 *$ Assignment $+0.6 *$ SEE_Theory
Final Attainment:
$A_{\text {ECC401.4 }}=0.8 * A_{\text {CSC703.2D }}+0.2 * A_{\text {CSC703.2I }}$
CO CSC401.4:
Direct Method
$A_{\mathrm{CSC} 704.2 D}=0.2 *$ Test $+0.2 *$ Assignment $+0.6 *$ SEE_Theory
Final Attainment:
$A_{\text {CSC704.2 }}=0.8^{*} A_{\text {CSC704.2D }}+0.2 * A_{\text {CSC704.2I }}$
CO CSC401.5:
Direct Method
$A_{\mathrm{ECC401.3}}=0.2 *$ Test $+0.2 *$ Assignment $+0.6 *$ SEE _Theory
Final Attainment:
$A_{\mathrm{ECC} 401.4}=0.8 * A_{\mathrm{CSC703.2D}}+0.2 * A_{\mathrm{CSC} 703.2 I}$
CO CSC401.6:
Direct Method
$A_{\text {ECC401.3 }}=0.2 *$ Test $+0.2 *$ Assignment $+0.6 * S E E _$Theory
Final Attainment:
$A_{\text {ECC401.4 }}=0.8 * A_{\text {CSC703.2D }}+0.2 * A_{\text {CSC703.2I }}$

Course Level Gap (if any):
Content beyond Syllabus:

Lecture Plan: (Theory)

Module	Contents	Hour s	Planned date	Actual date	Content Delivery Method	Remark
1	Linear Algebra (Theory of Matrices): Characteristic Equation,	7	$\begin{aligned} & \hline 09 / 01 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & \hline 09 / 01 / 20 \\ & 23 \end{aligned}$	Traditional	
	Eigenvalues and Eigenvectors		$\begin{aligned} & 11 / 01 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 10 / 01 / 20 \\ & 23 \end{aligned}$	Traditional	Exchang ed with PP
	Properties of Eigenvalues and Eigenvectors (without proof)		$\begin{aligned} & 13 / 01 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 11 / 01 / 20 \\ & 23 \end{aligned}$	Traditional	Exchang ed with PP
	Cayley-Hamilton Theorem (without proof), verification		$\begin{aligned} & \hline 16 / 01 / 20 \\ & 23 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 16 / 01 / 20 \\ & 23 \\ & \hline \end{aligned}$	Traditional	
	Reduction of higher degree polynomials		$\begin{aligned} & 18 / 01 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 17 / 01 / 20 \\ & 23 \end{aligned}$	Traditional	Exchang ed with PP
	Similarity of matrices		$\begin{aligned} & 20 / 01 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 18 / 01 / 20 \\ & 23 \end{aligned}$	Traditional	Exchang ed with PP
	diagonalizable and nondiagonalizable matrices		$\begin{aligned} & 23 / 01 / 20 \\ & 23 \\ & \hline \end{aligned}$	$\begin{aligned} & 23 / 01 / 20 \\ & 23 \\ & \hline \end{aligned}$	Traditional	
2	Complex Integration: Line Integral	7	$\begin{aligned} & 24 / 01 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 24 / 01 / 20 \\ & 23 \end{aligned}$		
	Cauchy's Integral theorem for simple connected and multiply connected regions (without proof)		$\begin{aligned} & 25 / 01 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 25 / 01 / 20 \\ & 23 \end{aligned}$		
	Cauchy's Integral formula (without proof).		$\begin{aligned} & \hline 30 / 01 / 20 \\ & 23 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 30 / 01 / 20 \\ & 23 \\ & \hline \end{aligned}$		
	Taylor's and Laurent's series (without proof)		$\begin{aligned} & 31 / 01 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 31 / 01 / 20 \\ & 23 \end{aligned}$		

	Definition of Singularity, Zeroes, poles of $f(z)$		$\begin{aligned} & 01 / 02 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 31 / 01 / 20 \\ & 23 \end{aligned}$	Engaged Lecture of DBMS Sujata Ma'am
	Residues		$\begin{aligned} & \text { 06/02/20 } \\ & 23 \end{aligned}$	$\begin{aligned} & 01 / 02 / 20 \\ & 23 \end{aligned}$	
	Cauchy's Residue Theorem (without proof)		$\begin{aligned} & 07 / 02 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 6 / 02 / 202 \\ & 3 \end{aligned}$	
5	Types of solutions, Standard and Canonical of LPP, Basic and Feasible solutions, slack variables, surplus variables	6	$\begin{aligned} & 08 / 02 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 07 / 02 / 20 \\ & 3 \end{aligned}$	
	Simplex method		$\begin{aligned} & 13 / / 02 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 08 / 02 / 20 \\ & 23 \end{aligned}$	
	Artificial variables, Big-M method (Method of penalty)		$\begin{aligned} & 14 / 02 / 20 \\ & 23 \\ & \hline \end{aligned}$	$\begin{aligned} & 13 / 02 / 20 \\ & 23 \end{aligned}$	
	Duality		$\begin{aligned} & 15 / 02 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 14 / 02 / 20 \\ & 23 \end{aligned}$	
	Dual of LPP		$\begin{aligned} & 20 / 02 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 15 / 02 / 20 \\ & 23 \end{aligned}$	
	Dual Simplex Method		$\begin{aligned} & 21 / 02 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 20 / 02 / 20 \\ & 23 \end{aligned}$	
6	NLPP with one equality constraint (two or three variables) using the method of Lagrange's multipliers-I	7	$\begin{aligned} & 22 / 02 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 21 / 02 / 20 \\ & 23 \end{aligned}$	
	NLPP with one equality constraint (two or three variables) using the method of Lagrange's multipliers-II		$\begin{aligned} & 6 / 03 / 202 \\ & 3 \end{aligned}$	$\begin{aligned} & 22 / 02 / 20 \\ & 23 \end{aligned}$	Sports day on 6th March
	NLPP with two equality constraints-I		$\begin{aligned} & 8 / 03 / 202 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 09 / 03 / 20 \\ & 23 \end{aligned}$	Crescen do
	NLPP with two equality constraints-II		$\begin{aligned} & 13 / 03 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 13 / 03 / 20 \\ & 23 \end{aligned}$	
	NLPP with inequality constraint: Kuhn-Tucker conditions-I		$\begin{aligned} & 14 / 03 / 20 \\ & 23 \\ & \hline \end{aligned}$	$\begin{aligned} & 14 / 03 / 20 \\ & 23 \\ & \hline \end{aligned}$	
	NLPP with inequality constraint: Kuhn-Tucker conditions-II		$\begin{aligned} & 15 / 03 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 15 / 03 / 20 \\ & 23 \end{aligned}$	
	NLPP with inequality constraint: Kuhn-Tucker conditions-III		$\begin{aligned} & 20 / 03 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 16 / 03 / 20 \\ & 23 \end{aligned}$	
4	Probability Distribution: Poisson distribution	7	$\begin{aligned} & 21 / 03 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 19 / 03 / 20 \\ & 23 \end{aligned}$	
	Probability Distribution: Normal distribution		$\begin{aligned} & 27 / 03 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 20 / 03 / 20 \\ & 23 \end{aligned}$	Tut to lec
	Sampling distribution, Test of Hypothesis, Level of Significance, Critical region, One-tailed, and twotailed test, Degree of freedom.		$\begin{aligned} & 28 / 03 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 21 / 03 / 20 \\ & 23 \end{aligned}$	
	Students' t-distribution (Small sample). Test the significance of mean		$\begin{aligned} & 29 / 03 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 23 / 03 / 20 \\ & 23 \end{aligned}$	
	Students' t-distribution (Small sample). Test the Difference between the means of two samples.		$\begin{aligned} & 03 / 04 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 03 / 04 / 20 \\ & 23 \end{aligned}$	
	Chi-Square Test: Test of goodness of fit		$\begin{aligned} & \hline 04 / / 04 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 05 / 04 / 20 \\ & 23 \end{aligned}$	
	Chi-Square Test: Independence of attributes, Contingency table-II		$\begin{aligned} & 05 / / 04 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 06 / 04 / 20 \\ & 23 \\ & \hline \end{aligned}$	
3	Definition and Region of Convergence, Transform of Standard Functions:	5	$\begin{aligned} & 10 / 04 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 10 / 04 / 20 \\ & 23 \end{aligned}$	
	Properties of Z Transform: Change of Scale, Shifting Property,		$\begin{aligned} & 11 / 04 / 20 \\ & 23 \end{aligned}$	$\begin{aligned} & \hline 11 / 04 / 20 \\ & 23 \\ & \hline \end{aligned}$	

Tutorial Plan: (Theory)

Tutorial No.	Contents	Hours	Planned date	Actual date	Remark
$\mathbf{1}$	Linear Algebra	$\mathbf{1}$	$02 / 02 / 2023$	$02 / 02 / 2023$	
$\mathbf{2}$	Complex Integration	$\mathbf{1}$	$09 / 02 / 2023$	$09 / 02 / 2023$	
$\mathbf{3}$	LPP	$\mathbf{1}$	$16 / 02 / 2023$	$16 / 02 / 2023$	
$\mathbf{4}$	NLPP	$\mathbf{1}$	$17 / 04 / 2023$	$17 / 04 / 2023$	Home Assignment
$\mathbf{5}$	Probability	$\mathbf{1}$	$17 / 04 / 2023$	$17 / 04 / 2023$	Home Assignment
$\mathbf{6}$	Z transform	$\mathbf{1}$	$17 / 04 / 2023$	$17 / 04 / 2023$	Home Assignment

Text Books

1. Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley \& Sons.
2. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa Reference Books:
3. Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley \& Sons.
4. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa

Web References:

1.
2.

Evaluation Scheme

CIE Scheme
Internal Assessment: 20 (Average of two tests)

Internal Assessment Scheme

Module		Lecture Hours	No. of questions in			No. of questions in SEE	
		Test 1	Test 2	Test 3*			
1	Linear Algebra		7	$\begin{gathered} \hline 01(5 \\ \text { marks) } \end{gathered}$	-	--	--
2	Comp;ex Integration	7	$\begin{aligned} & \hline 02 \text { (10 } \\ & \text { Marks) } \\ & \hline \end{aligned}$	-	--	--	
3	Z Transform:	5		$\begin{gathered} \hline 01(5 \\ \text { marks) } \end{gathered}$	--	--	
4	Probability Distribution	7		$\begin{aligned} & \hline 02(10 \\ & \text { Marks) } \\ & \hline \end{aligned}$	--	--	

5	Linear Programming Problems	6	$01(5$ marks)	$01(5$ marks)	--	--
6	Nonlinear Programming Problems:	7	-		--	--

Note: Four questions will be set in the Test paper
Verified by:

Programme Coordinator

Subject Expert: Gajendra Singh

